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CHAPTER

An introduction
to fermentation processes

The term “fermentation” is derived from the Latin verb fervere, to boil, thus describ-
ing the appearance of the action of yeast on the extracts of fruit or malted grain. The
boiling appearance is due to the production of carbon dioxide bubbles caused by
the anaerobic catabolism of the sugar present in the extract. However, fermentation
has come to have with different meanings to biochemists and to industrial microbi-
ologists. Its biochemical meaning relates to the generation of energy by the catabo-
lism of organic compounds, whereas its meaning in industrial microbiology tends to
be much broader.

The catabolism of sugar is an oxidative process, which results in the production
of reduced pyridine nucleotides, which must be reoxidized for the process to con-
tinue. Under aerobic conditions, reoxidation of reduced pyridine nucleotide occurs
by electron transfer, via the cytochrome system, with oxygen acting as the terminal
electron acceptor. However, under anaerobic condition, reduced pyridine nucleotide
oxidation is coupled with the reduction of an organic compound, which is often a
subsequent product of the catabolic pathway. In the case of the action of yeast on
fruit or grain extracts, NADH is regenerated by the reduction of pyruvic acid to
ethanol. Different microbial taxa are capable of reducing pyruvate to a wide range
of end products, as illustrated in Fig. 1.1. Thus, the term fermentation has been used
in a strict biochemical sense to mean an energy-generation process in which organic
compounds act as both electron donors and terminal electron acceptors.

The production of ethanol by the action of yeast on malt or fruit extracts has been
carried out on a large scale for many years and was the first “industrial” process for
the production of a microbial metabolite. Thus, industrial microbiologists have ex-
tended the term fermentation to describe any process for the production of product by
the mass culture of a microorganism. Brewing and the production of organic solvents
may be described as fermentation in both senses of the word but the description of an
aerobic process as a fermentation is obviously using the term in the broader, micro-
biological, context and it is in this sense that the term is used in this book.

THE RANGE OF FERMENTATION PROCESSES

There are five major groups of commercially important fermentations:
1. Those that produce microbial cells (or biomass) as the product.

2. Those that produce microbial enzymes.

Principles of Fermentation Technology
Copyright © 2017 Elsevier Ltd. All rights reserved.
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FIGURE 1.1 Bacterial Fermentation Products of Pyruvate

Pyruvate formed by the catabolism of glucose is further metabolized by pathways which
are characteristic of particular organisms and which serve as a biochemical aid to
identification. End products of fermentations are italicized (Dawes & Large, 1982).

A, Lactic acid bacteria (Streptococcus, Lactobacillus); B, Clostridium propionicum; C, Yeast,
Acetobacter, Zymomonas, Sarcina ventriculi, Erwinia amylovora; D, Enterobacteriaceae
(coli-aerogenes); E, Clostridia; F, Klebsiella; G, Yeast; H, Clostridia (butyric, butylic
organisms); |, Propionic acid bacteria.

3. Those that produce microbial metabolites.

4. Those that produce recombinant products.

5. Those that modify a compound that is added to the fermentation—the
transformation process.

The historical development of these processes will be considered in a later section
of this chapter, but it is first necessary to include a brief description of the five groups.
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MICROBIAL BIOMASS

The commercial production of microbial biomass may be divided into two major
processes: the production of yeast to be used in the baking industry and the produc-
tion of microbial cells to be used as human food or animal feed (single-cell protein).
Bakers’ yeast has been produced on a large scale since early 1900s and yeast was
produced as human food in Germany during the First World War. However, it was
not until the 1960s that the production of microbial biomass as a source of food
protein was explored to any great depth. As a result of this work, reviewed briefly in
Chapter 2, a few large-scale continuous processes for animal feed production were
established in the 1970s. These processes were based on hydrocarbon feedstocks,
which could not compete against other high protein animal feeds, resulting in their
closure in the late 1980s (Sharp, 1989). However, the demise of the animal feed bio-
mass fermentation was balanced by ICI plc and Rank Hovis McDougal establishing a
process for the production of fungal biomass for human food. This process was based
on a more stable economic platform and has been a significant economic success
(Wiebe, 2004).

MICROBIAL ENZYMES

Enzymes have been produced commercially from plant, animal, and microbial
sources. However, microbial enzymes have the enormous advantage of being able
to be produced in large quantities by established fermentation techniques. Also, it
is infinitely easier to improve the productivity of a microbial system compared with
a plant or an animal one. Furthermore, the advent of recombinant DNA technology
has enabled enzymes of animal origin to be synthesized by microorganisms (see
Chapter 12). The uses to which microbial enzymes have been put are summarized
in Table 1.1, from which it may be seen that the majority of applications are in the
food and related industries. Enzyme production is closely controlled in microorgan-
isms and in order to improve productivity these controls may have to be exploited or
modified. Such control systems as induction may be exploited by including induc-
ers in the medium (see Chapter 4), whereas repression control may be removed by
mutation and recombination techniques. Also, the number of gene copies coding for
the enzyme may be increased by recombinant DNA techniques. Aspects of strain
improvement are discussed in Chapter 3.

MICROBIAL METABOLITES

The growth of a microbial culture can be divided into a number of stages, as dis-
cussed in Chapter 2. After the inoculation of a culture into a nutrient medium there is
a period during which growth does not appear to occur; this period is referred as the
lag phase and may be considered as a time of adaptation. Following a period during
which the growth rate of the cells gradually increases, the cells grow at a constant
maximum rate and this period is known as the log, or exponential, phase. Eventu-
ally, growth ceases and the cells enter the so-called stationary phase. After a further

L
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Table 1.1 Commercial Applications of Enzymes

Industry

Baking and
milling

Brewing

Cereals

Chocolate and
cocoa

Coffee

Confectionery

Cotton
Corn syrup

Dairy

Eggs, dried
Fruit juices

Laundry
Leather

Meat

Paper
Pharmaceutical

Application

Reduction of dough viscosity,
acceleration of fermentation,
increase in loaf volume,
improvement of crumb softness,
and maintenance of freshness

Improvement of dough texture,
reduction of mixing time, increase
in loaf volume

Mashing
Chill proofing
Improvement of fine filtration

Precooked baby foods, breakfast
foods

Manufacture of syrups

Coffee bean fermentation

Preparation of coffee
concentrates

Manufacture of soft center
candies

Low temperature processing
Manufacture of high-maltose
Syrups

Production of low D.E. syrups
Production of glucose from corn
syrup

Manufacture of fructose syrups

Manufacture of protein
hydrolysates

Stabilization of evaporated milk

Production of whole milk
concentrates, ice cream, and
frozen desserts

Curdling milk

Glucose removal
Clarification

Oxygen removal
Detergents

Dehairing, baiting
Tenderization

Removal of wood waxes
Digestive aids

Enzyme

Amylase

Protease

Amylase
Protease
B-Glucanase
Amylase

Amylase

Pectinase

Pectinase,
hemicellulase

Invertase,
pectinase

Pectate lyase
Amylase

Amylase
Amyloglycosidase

Glucose
isomerase

Protease

Protease
Lactase

Protease
Glucose oxidase
Pectinases
Glucose oxidase
Protease, lipase
Protease
Protease

Lipase

Amylase,
protease

Source

Fungal

Fungal/bacterial

Fungal/bacterial
Fungal/bacterial
Fungal/bacterial
Fungal

Fungal/bacterial

Fungal
Fungal

Fungal/bacterial

Fungal
Fungal

Bacterial
Fungal

Bacterial
Fungal/bacterial

Fungal
Yeast

Fungal/bacterial
Fungal

Fungal

Fungal

Bacterial
Fungal/bacterial
Fungal

Fungal

Fungal
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Table 1.1 Commercial Applications of Enzymes (cont.)

Industry Application Enzyme Source
Antiblood clotting Streptokinase Bacterial
Various clinical tests Numerous Fungal/bacterial
Biotransformations Numerous Fungal/bacterial
Photography Recovery of silver from spent fim | Protease Bacterial
Protein Manufacture Proteases Fungal/bacterial
hydrolysates
Soft drinks Stabilization Glucose oxidase, | Fungal
catalase
Textiles Desizing of fabrics Amylase Bacterial
Vegetables Preparation of purees and soups | Pectinase, Fungal
amylase, cellulase

Modlified from Boing (1982).

period of time, the viable cell number declines as the culture enters the death phase.
As well as this kinetic description of growth, the behavior of a culture may also be
described according to the products that it produces during the various stages of
the growth curve. During the log phase of growth, the products produced are either
anabolites (products of biosynthesis) essential to the growth of the organism and in-
clude amino acids, nucleotides, proteins, nucleic acids, lipids, carbohydrates, etc. or
are catabolites (products of catabolism) such as ethanol and lactic acid, as illustrated
in Fig. 1.1. These products are referred as the primary products of metabolism and
the phase in which they are produced (equivalent to the log, or exponential phase) as
the trophophase (Bu’Lock et al., 1965).

Many products of primary metabolism are of considerable economic importance
and are being produced by fermentation, as illustrated in Table 1.2. The synthesis of
anabolic primary metabolites by wild-type microorganisms is such that their produc-
tion is sufficient to meet the requirements of the organism. Thus, it is the task of the
industrial microbiologist to modify the wild-type organism and to provide cultural
conditions to improve the productivity of these compounds. This has been achieved
very successfully, over many years, by the selection of induced mutants, the use of
recombinant DNA technology, and the control of the process environment of the pro-
ducing organism. This is exemplified by the production of amino acids where pro-
ductivity has been increased by several orders of magnitude. However, despite these
spectacular achievements, microbial processes have only been able to compete with
the chemical industry for the production of relatively complex and high value com-
pounds. In recent years, this situation has begun to change. The advances in metabol-
ic engineering arising from genomics, proteomics, and metabolomics have provided
new powerful techniques to further understand the physiology of “over-production”
and to reengineer microorganisms to “over-produce” end products and intermediates
of primary metabolism. Combined with the rising cost of petroleum and the desir-
ability of environmentally friendly processes these advances are now facilitating the
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Table 1.2 Some Primary Products of Microbial Metabolism and Their
Commercial Significance

Primary Metabolite Commercial Significance

Ethanol “Active ingredient” in alcoholic beverages
Used as a motor-car fuel when blended with petroleum

Organic acids Various uses in the food industry

Glutamic acid Flavor enhancer

Lysine Feed supplement

Nucleotides Flavor enhancers

Phenylalanine Precursor of aspartame, sweetener

Polysaccharides Applications in the food industry
Enhanced oil recovery

Vitamins Feed supplements

development of economic microbial processes for the production of bulk chemicals
and feedstocks for the chemical industry (Otero & Nielsen, 2010; Van Dien, 2013).
These aspects are considered later in this chapter and in Chapter 3.

During the deceleration and stationary phases, some microbial cultures synthesize
compounds which are not produced during the trophophase and which do not appear
to have any obvious function in cell metabolism. These compounds are referred to as
the secondary compounds of metabolism and the phase in which they are produced
(equivalent to the stationary phase) as the idiophase (Bu’Lock et al., 1965). It is im-
portant to realize that secondary metabolism may occur in continuous cultures at low
growth rates and is a property of slow-growing, as well as nongrowing cells. When it
is appreciated that microorganisms grow at relatively low growth rates in their natu-
ral environments, it is tempting to suggest that it is the idiophase state that prevails in
nature rather than the trophophase, which may be more of a property of microorgan-
isms in culture. The interrelationships between primary and secondary metabolism
are illustrated in Fig. 1.2, from which it may be seen that secondary metabolites
tend to be elaborated from the intermediates and products of primary metabolism.
Although the primary biosynthetic routes illustrated in Fig. 1.2 are common to the
vast majority of microorganisms, each secondary product would be synthesized by
only a relatively few different microbial species. Thus, Fig. 1.2 is a representation of
the secondary metabolism exhibited by a very wide range of different microorgan-
isms. Also, not all microorganisms undergo secondary metabolism—it is common
amongst microorganisms that differentiate such as the filamentous bacteria and fungi
and the sporing bacteria but it is not found, for example, in the Enterobacteriaceae.
Thus, the taxonomic distribution of secondary metabolism is quite different from that
of primary metabolism. It is important to appreciate that the classification of micro-
bial products into primary and secondary metabolites is a convenient, but in some
cases, artificial system. To quote Bushell (1988), the classification “should not be
allowed to act as a conceptual straitjacket, forcing the reader to consider all products
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FIGURE 1.2 The Interrelationships Between Primary and Secondary Metaholism

Primary catabolic routes are shown in heavy lines and secondary products are italicized
(Turner, 1971).

as either primary or secondary metabolites.” It is sometimes difficult to categorize a
product as primary or secondary and the kinetics of synthesis of certain compounds
may change depending on the cultural conditions.

The physiological role of secondary metabolism in the producer organism in its
natural environment has been the subject of considerable debate and their functions
include effecting differentiation, inhibiting competitors, and modulating host physi-
ology. However, the importance of these metabolites to the fermentation industry is
the effects they have on organisms other than those that produce them. Many second-
ary metabolites have antimicrobial activity, others are specific enzyme inhibitors,
some are growth promoters and many have pharmacological properties (Table 1.3).
Thus, the products of secondary metabolism have formed the basis of a major section

Table 1.3 Some Secondary Products of Microbial Metabolism and Their
Commercial Significance

Secondary Metabolite Commercial Significance
Penicillin, cephalosporin, streptomycin Antibiotics

Bleomycin, mitomycin Anticancer agents
Lovastatin Cholesterol-lowering agent
Cyclosporine A Immunosuppressant
Avermectins Antiparasitic agents

7
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of the fermentation industry. As in the case for primary metabolites, wild-type micro-
organisms tend to produce only low concentrations of secondary metabolites, their
synthesis being controlled by induction, quorum sensing, growth rate, feedback sys-
tems, and catabolite repression, modulated by a range of effector molecules (van
Wezel & McDowall, 2011). The techniques which have been developed to improve
secondary metabolite production are considered in Chapters 3 and 4.

RECOMBINANT PRODUCTS

The advent of recombinant DNA technology has extended the range of potential
fermentation products. Genes from higher organisms may be introduced into mi-
crobial cells such that the recipients are capable of synthesizing “foreign” proteins.
These proteins are described as “heterologous” meaning “derived from a different
organism.” A wide range of microbial cells has been used as hosts for such systems
including Escherichia coli, Saccharomyces cerevisiae, and filamentous fungi. Ani-
mal cells cultured in fermentation systems are also widely used for the production of
heterologous proteins. Although the animal cell processes were based on microbial
fermentation technology, a number of novel problems had to be solved—animal cells
were considered extremely fragile compared with microbial cells, the achievable cell
density is very much less than in a microbial process and the media are very com-
plex. These aspects are considered in detail in Chapters 4 and 7. Products produced
by such genetically engineered organisms include interferon, insulin, human serum
albumin, factors VIII and IX, epidermal growth factor, calf chymosin, and bovine
somatostatin. Important factors in the design of these processes include the secretion
of the product, minimization of the degradation of the product, and control of the
onset of synthesis during the fermentation, as well as maximizing the expression of
the foreign gene. These aspects are considered in more detail later in this chapter and
in Chapters 4 and 12.

TRANSFORMATION PROCESSES

Microbial cells may be used to convert a compound into a structurally related, finan-
cially more valuable, compound. Because microorganisms can behave as chiral cata-
lysts with high positional specificity and stereospecificity, microbial processes are
more specific than purely chemical ones and enable the addition, removal, or modifi-
cation of functional groups at specific sites on a complex molecule without the use of
chemical protection. The reactions, which may be catalyzed include dehydrogenation,
oxidation, hydroxylation, dehydration and condensation, decarboxylation, animation,
deamination, and isomerization. Microbial processes have the additional advantage
over chemical reagents of operating at relatively low temperatures and pressures
without the requirement for potentially polluting heavy-metal catalysts. Although
the production of vinegar is the oldest established microbial transformation process
(conversion of ethanol to acetic acid), the majority of these processes involve the pro-
duction of high-value compounds including steroids, antibiotics, and prostaglandins.
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However, the conversion of acetonitrile to acrylamide by Rhodococcus rhodo-
chrous is an example of the technology being used in the manufacturing of a bulk
chemical—20,000 metric tons being produced annually (Demain & Adrio, 2008).

A novel application of microbial transformation is the use of microorganisms to
mimic mammalian metabolism. Humans and animals will metabolize drugs such
that they may be removed from the body. The resulting metabolites may be biologi-
cally active themselves—either eliciting a desirable effect or causing damage to the
organism. Thus, in the development of a drug it is necessary to determine the activity
of not only the administered drug but also its metabolites. These studies may require
significant amount of the metabolites and while it may be possible to isolate them
from tissues, blood, urine, or faeces of the experimental animal, their concentration
is often very low resulting in such approaches being time-consuming, expensive, and
far from pleasant. Sime (2006) discussed the exploitation of the metabolic ability of
microorganisms to perform these biotransformations. Thus, drug metabolites have
been produced in small-scale fermentation, facilitating the investigation of their bio-
logical activity and/or toxicity.

The anomaly of the transformation fermentation process is that a large biomass
has to be produced to catalyze a single reaction. Thus, many processes have been
streamlined by immobilizing either the whole cells, or the isolated enzymes, which
catalyze the reactions, on an inert support. The immobilized cells or enzymes may
then be considered as catalysts, which may be reused many times.

THE CHRONOLOGICAL DEVELOPMENT
OF THE FERMENTATION INDUSTRY

The chronological development of the fermentation industry may be represented as
five overlapping stages as illustrated in Table 1.4. The development of the industry
prior to 1900 is represented by stage 1, where the products were confined to potable
alcohol and vinegar. Although beer was first brewed by the ancient Egyptians, the
first true large-scale breweries date from the early 1700s when wooden vats of 1500
barrels capacity were introduced (Corran, 1975). Even some process control was at-
tempted in these early breweries, as indicated by the recorded use of thermometers in
1757 and the development of primitive heat exchangers in 1801. By the mid-1800s,
the role of yeasts in alcoholic fermentation had been demonstrated independently
by Cagniard-Latour, Schwann, and Kutzing but it was Pasteur who eventually con-
vinced the scientific world of the obligatory role of these microorganisms in the
process. During the late 1800s, Hansen started his pioneering work at the Carlsberg
brewery and developed methods for isolating and propagating single yeast cells to
produce pure cultures and established sophisticated techniques for the production of
starter cultures. However, use of pure cultures did not spread to the British ale brew-
eries and it is true to say that many of the small, traditional, ale-producing breweries
still use mixed yeast cultures at the present time but, nevertheless, succeed in produc-
ing high quality products.





